

DyMO: Training-Free Diffusion Model Alignment with Dynamic Multi-Objective Scheduling

Introduction

Diffusion Model Alignment enhances the generated image in two aspects: semantic alignment with the textual prompt and visual alignment with user preferences.

Figure 1. Sample images generated by DyMO based on SDXL backbones.

Limitations of Existing Works:

- Training-based alignment methods are resource-intensive and lacks generalization across diverse preferences.
- Training-free alignment methods suffer from inaccurate guidance from the noisy samples or blurred one-step predictions.

<u>Test-time Alignment</u> with Dynamic Multi-Objective Scheduling (DyMO):

- > Guiding the denoising process using gradients from the pre-trained text-aware preference scores on one-step predictions.
- > One-step prediction is efficient but lacks semantic fidelity, weakening textual alignment in preference-based guidance.
- > A semantic alignment objective is introduced to align the visual content (reflected in text-image attention maps) with LLM-extracted text semantics.
- > We dynamically schedule two objectives for tailored guidance across timesteps, generating detailed content while keeping the layout.
- > A dynamic recurrent strategy is further proposed to adaptively decide iteration count at different stages for improved guidance.

Xin Xie, Dong Gong*

The University of New South Wales (UNSW), Australia https://shelsin.github.io/dymo.github.io/

The Proposed DyMO

Preference Alignment Guidance: Given a text prompt c, we estimate a text-aware human preference score of $x'_{0|t}$.

$$\mathcal{L}_R(\mathbf{x}'_{0|t}, \mathbf{c}, t) = \exp(\tau \cdot f_{\mathbf{V}}(\mathbf{x}'_{0|t}, t)^T f_{\mathbf{T}}(\mathbf{c}))$$

Semantic Alignment Guidance: We align image content (via cross-attention maps M) with a text semantic graph extracted by LLM.

$$egin{split} \mathcal{L}_A &= - \; rac{1}{|\mathbf{S}_{ ext{pos}}|} \sum_{(s,l)\in\mathbf{S}_{ ext{pos}}} f(M_s,M_l) \ &+ rac{1}{|\mathbf{S}_{ ext{neg}}|} \sum_{(s,l)\in\mathbf{S}_{ ext{neg}}} f(M_s,M_l) \end{split}$$

Multi-Objective Dynamic Scheduling: We dynamically balance \mathcal{L}_A and \mathcal{L}_R over denoising steps for tailored guidance.

$$\mathcal{L} = w_A \cdot \mathcal{L}_A(M) + w_R \cdot \mathcal{L}_R(\mathbf{x}'_{0|t}, \mathbf{c}, t)$$

• Latent Update: $\mathbf{z}_{t-1} \leftarrow \mathbf{z}_t + \epsilon_{\theta}(\mathbf{z}_t, \mathbf{c}, t) - \eta_t \nabla_{\mathbf{z}_t} \mathcal{L}$

Dynamic Time-Travel Strategy: Adaptively determine the number of recurrent guidance.

$$r_t = h_t \cdot \|
abla_{\mathbf{z}_t} \mathcal{L}\|$$

 $\epsilon_1 \sim \mathcal{N}(0, \mathbf{I})$ if t > 1, else $\epsilon_1 = 0$. $\tilde{\boldsymbol{\epsilon}}_t, M = \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{z}_t, t)$ $\mathbf{z}_{t-1} = (1 + \frac{1}{2}\beta_t)\mathbf{z}_t + \beta_t \tilde{\boldsymbol{\epsilon}}_t + \sqrt{\beta_t} \boldsymbol{\epsilon}_1$ $\mathbf{z}_{0|t}' = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{z}_t + (1 - \bar{\alpha}_t) \tilde{\boldsymbol{\epsilon}}_t)$ $\mathbf{x}_{0|t}' = D(\mathbf{z}_{0|t}')$ **if** $t \ge 800$ $w_A = 1, w_R = 0$ $-k(\frac{\|\mathbf{z}_{0|t}'-\mathbf{z}_{0|t+1}'\|}{\|\mathbf{z}_{0|t}'-\mathbf{z}_{0|t+1}'\|})$ $\left\|\mathbf{z}_{0|t+1}'\right\|$ w = 1 - e**if** $800 > t \ge 500$ $w_A = w, w_R = 1 - w$ **if** $500 > t \ge 1$ $w_A = 0, w_R = 1$ $\mathcal{L} = w_A \cdot \mathcal{L}_A(M) + w_R \cdot \mathcal{L}_R(\mathbf{x}'_{0|t}, \mathbf{c}, t)$ $oldsymbol{g}_t =
abla_{\mathbf{z}_t} \mathcal{L}$ $\mathbf{z}_{t-1} = \mathbf{z}_{t-1} - \eta_t \cdot \frac{\|\boldsymbol{\epsilon}_t\|}{\|\boldsymbol{g}_t\|_2^2} \cdot \boldsymbol{g}_t$ ▷ Compute once at each timestep $r_t = h_t \cdot \|\boldsymbol{g}_t\|$ \triangleright Iterate r_t times for $i = r_t, ..., 1$ do $\boldsymbol{\epsilon}_2 \sim \mathcal{N}(0, \mathbf{I})$ $\mathbf{z}_t = \sqrt{1 - \beta_t} \mathbf{z}_{t-1} + \sqrt{\beta_t} \boldsymbol{\epsilon}_2$ Repeat from step3 to step16

1: $\mathbf{z}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for t = T, ..., 1 do 13:

Algorithm 1 Our method + Dynamic Time-Travel Straregy

Input: prompt c, noise predictor $\epsilon_{\theta}(\cdot, t)$, human preference evaluator $\mathcal{L}_R(\cdot, \mathbf{c})$, semantic alignment loss function $\mathcal{L}_A(\cdot)$, timesteps T, decoder D, guidance strength η_t and pre-defined parameters β_t , $\bar{\alpha}_t$, h_t , k.

Qualitative comparison on both SD V1.5 and SDXL backbones.

Figure 3. Qualitative comparison based on SD V1.5 backbones.

Comparisons with other alignment methods across four metrics. Table 2. Comparison of AI feedback on SDXL-based methods.

Table 1. Comparison of AI feedback on SD V1.5-based methods.

	$\mathbf{D}_{1}^{*} = 1_{1} \mathbf{C}_{1}^{*} = 0_{1}^{*} \mathbf{C}_{1}^{*}$		Luces Decrea		-	Methods	PickScore	HPSv2	ImageReward	Aesthetics
Methods	PickScore	HPSv2	ImageReward	Aesthetics	-	SDXL	21.91	0.2602	0.7755	5.960
SD V1.5	20.73	0.2341	0.1697	5.337	-	DNO	22.14	0.2725	0.9053	6.042
DNO	20.05	0.2591	-0.3212	5.597		PromptOpt	21.98	0.2723	0.8671	5.881
PromptOpt	20.26	0.2490	-0.3366	5.465		FreeDom	22.13	0.2719	0.7722	5.908
FreeDom	21.96	0.2605	0.3963	5.515		SDXL+Ours	24.90	0.2839	<u>1.074</u>	<u>6.138</u>
AlignProp	20.56	0.2627	0.1128	5.456		Diffusion-DPO	22.30	0.2741	0.9789	5.891
Diffusion DDO	20.07	0.2656	0.2080	5 504		Diff-DPO+Ours	<u>24.46</u>	<u>0.2836</u>	<u>1.049</u>	<u>6.116</u>
	20.97	0.2030	0.2989	5.594		SPO	22.81	0.2778	1.082	6.319
Diffusion-KTO	21.15	0.2719	0.6156	5.697		SPO+Ours	23.85	0.2821	1.166	6.278
SPO	21.46	0.2671	0.2321	5.702		SD V3 5	21.03	0.2726	0.9697	5 775
SD V1 5 \pm Ours	23.07	0 2755	0 7170	5 831			21.93	0.2720	1 011	5.115
SD VI.JTOUIS	<u> <u> </u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0.2133	$\underline{\mathbf{0./1/0}}$	<u>3.031</u>	_	FLUX	22.04	0.2760	1.011	0.077

Performance analysis of core components.

Table 3. Ablation study results.							
Methods	PickScore	HPSv2	ImageReward	Aesthetics			
w/o \mathcal{L}_A	22.07	0.2546	0.6413	5.686			
w/o \mathcal{L}_R	20.37	0.2418	0.1230	5.426			
w/o w	22.34	0.2656	0.6748	5.708			
w/o Polyak step	20.61	0.2640	0.2838	5.470			
w PickSocre	23.38	0.2746	0.5463	5.694			
Ours (Llama-3.3)	22.58	<u>0.2829</u>	0.7048	5.802			
Ours (GPT-4)	23.07	0.2755	<u>0.7170</u>	<u>5.831</u>			

Ablation study on effect of recurrent strategy.

Table 4. Effect of the iteration count in time-travel straregy.								
Iteration	PickScore	HPSv2	ImageReward	Aesthetics	Avg Time			
1	20.41	0.2423	0.6191	5.652	40s			
5	21.27	0.2610	0.6679	5.661	170s			
10	22.85	0.2677	0.7055	5.706	295s			
Dynamic	<u>23.07</u>	<u>0.2755</u>	<u>0.7170</u>	<u>5.831</u>	190s			

17: return x_0

Experiments

Figure 4. Qualitative comparison based on SDXL backbones.

User preference evaluation.

Figure 6. User study results.