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Problem Definition Methodology Experiments
. . . . . Rethink style transfer mechanism: We utilize independent artistic components to make diverse restylized artworks
Goal: unsupervised style discovery and personalized style manipulation. P N .
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R We can always extract the style feature f; which is the root factor that controls the

@ More rich and accurate @ Better feature fusion whole style.
feature representation
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Artistic Ingredients Separation:

Inspired by the Fourier transform, time-domain and frequency-domain analysis of
signals, we argue that the style features 1s mixed discrete series which can be
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In style transter, feature extraction and feature fusion are optimization B ——
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targets to achieve more high-quality stylization. But there are several
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drawbacks: separate into independent components as follow, and different artistic components b Y P
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styls:s .from the latent space, advancing the ability of controllable In a word, the style features are linear sum of style components. Without loss of e ot Color Tomperatune (Linar)
stylization. generality, we sample m style features to build the mixed matrix SF, which are used L, il s e e, S

» Artwork adjustment
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, , . to obtain p artistic components by FastICA algorithm like the cocktail party problem.
® We obtain the independent style components from the mixed latent .
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