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Abstract. Magnetic Resonance Imaging (MRI) is widely applied to di-
agnose malignant brain tumors like glioblastoma (GBM). Recent deep
network based brain tumor segmentation algorithms have facilitated au-
tomatic and accurate segmentation on MRI data, benefiting the clinical
diagnosis with efficiency. However, existing methods most work on cer-
tain datasets but suffer from performance degradation when tested on
unseen out-of-sample datasets. In this paper, we integrate the encoder-
decoder network structure with attention gate and Variational Autoen-
coders (VAE) to achieve promising segmentation results across different
situations. Considering there are four modalities in each brain MRI sam-
ple, an encoder based on 3D convolution is employed to capture the
local correlation among both spatial and modal neighbors. Then the ex-
tracted volumetric feature maps are fed into a decoder, finally generating
the segmentation results with attention gate module. To facilitate better
segmentation, we further adopt VAE as an auxiliary decoder to improve
the performance of the encoder.

Keywords: Brain Tumor Segmentation - Variational Autoencoders -
Attention Gate - Federated Evaluation - FeTS Challenge.

1 Introduction

Glioblastomas (GBM) are deemed as the most aggressive and heterogeneous
adult brain tumor [16], with the median survival of approximately 15 months
[15]. In practice, magnetic resonance imaging (MRI) offers an applicable choice
for routine clinical diagnosis in GBM. There are usually four modalities in each
MRI sample, including T1-weighted (T'1), contrast-enhanced T1-weighted (T1c),
T2-weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR) images.
Since these modalities provides different pathology clues, it is of great importance
to learn them comprehensively for better segmentation performance.

1.1 Medical Image Segmentation

With the rise of deep learning, Convolutional Neural Networks (CNN) based
approaches have achieved remarkable progress in medial image segmentation.
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Among them, the Fully Convolutional Network (FCN) [12] is an epochal work
that produces impressive segmentation results with an end-to-end network. It
afterward is usually used as the feature extractor for medical image analysis.
Another representative architecture in medical image segmentation is U-Net
[18] which builds connections between the encoder layer and the correspond-
ing decoder layer via feature map duplication. With these connections that skip
the network bottleneck, lower level details are sent to the decoder for delicate
segmentation outputs. Later literatures [8, 28, 14] continue to improve the U-Net
architecture from different points of view. However, these methods are inevitably
limited by the inductive locality bias of convolution, the reason coming from the
marginal scale of the receptive field. Therefore, how to model the long-range
dependencies becomes one of the breakthroughs in medical image segmentation.

1.2 Self-attention

Arising from natural language processing, the attention mechanism helps net-
works to capture long-range dependencies in feature maps. Many works [24, 19]
have explored to combine the advantages of CNN and the attention mechanism.
Recently, the transformer framework [22] is proposed and achieves the fantastic
performance on sequence-to-sequence translation. The essence of the transformer
is multiple self-attention layers, which can capture interactions between all pairs
of elements in the input sequence regardless of their relative position. Now the
transformer is also applied to computer vision tasks successfully. For example,
it is introduced to image classification [9,7,1], 3-Dimensional video grounding
[26, 21, 20], object detection [6,27] and style Transfer[25, 11]. Despite the excel-
lent and convincing results, the computational complexity of the transformer
based approaches increase exponentially. The issue becomes even more serious
in medical image analysis, because the qualified data can be very scarce for un-
common diseases like GBM. Therefore, how to balance the parameter scale of
the transformer and the training data is an important problem to be solved.

1.3 the Generalization Problem

Although the approaches based on neural networks have witnessed great pro-
gresses in medical image segmentation, they still face challenges in practical
scenarios, including “Al chasm”. “Al chasm” refers to the performance discrep-
ancy of an AI algorithm in research environments and real-life applications.
Algorithms based on networks are essentially data-driven and tend to be lim-
ited by the diversity of the training data. Existing methods are usually trained
and tested on the subset of a dataset, sliding over the data discrepancy in prac-
tice. When evaluated on unseen out-of-sample datasets from various institutions
that did not contribute data on the training set like the FeTS Challenge does,
most deep learning models will experience performance deterioration. To mea-
sure the generalization ability, in the FeT'S Challenge, the segmentation models
are evaluated across different medical institutions, MRI scanners, image acquisi-
tion parameters and populations. Therefore, it has practical significance to tackle
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the distribution shift between the training and the test sets and thus raise the
generalization ability of the model.

1.4 Method Motivation

On the basis of the above considerations, we summarize that an advanced method
for multimodal brain tumor segmentation should have the following characters.

Taking both encoded and decoded information in the medical image into
account

Exploiting the effective collaboration among different modalities of MRI

Tackling the distribution discrepancy between the training and the test sets

Producing accurate segmentation results with affordable computation cost

Inspired by the recent progress [23,10,2,13,4,3,5] in multimodal brain tu-
mor segmentation, we implement a typical encoder-decoder structure. As in [23],
instead of using 2D convolution to process the MRI sample slice-by-slice, a 3D
CNN is employed to learn different modalities of MRI as a whole, which can cap-
ture the local features within as well as across MRI modalities. Different from
[23], we further utilize an auxiliary VAE to enhance the ability of encoder in
feature extraction. Besides, attention gates are used to conduct the skip connec-
tions for obtaining more accurate segmentation, which mitigates the over-fitting
risk and benefits the model generalization ability.

2 Method

2.1 Overview

Fig. 1 (a) presents an illustration of the designed network consisting of roughly
four components. It essentially follows the encoder-decoder structure, whereas
the 3D CNN builds up the enhanced encoder together and there are two branches
of decoder during training. Given an MRI sample I € REXH*XWxD ‘the 3D CNN
first embeds the input into a feature map F', to capture the local knowledge
within and across different modalities. Specifically, C' refers to the number of
modalities, H x W is the spatial resolution of the medical image, and D is the
depth (or number of slices) of the medial image. Then the segmentation result
is output by the chief decoder (the upper decoder in Fig. 1) (a) with a series
of deconvolution layers. The auxiliary VAE (the lower decoder in Fig. 1) (a) is
employed to help with the parameter learning of the 3D CNN during training.
Following the U-Net structure, there are also skip connections through attention
gates between the corresponding layers in the encoder and the decoder.



4 Y. Li et al.

(24,H,W,D)

PLLEN i}
#8223

/ HWD UL
|7 “'“Fﬁﬁ) H WD mﬂﬂg @ uwn (24,H,W,D)
’ 6559
X
(C,H,W,D)
N(u(128), 0% (123))/ ‘
>
/ 32,H,W,D;
4»@ 1% S D, uwn (U"W" ¢ ) R2
HWD I/ H WD (12844,)(64 Y (C,H,W,D)

(16, (256,—

323237 16'16'16

(a) The network of our method

9 ol |
>| W:1x1x1
[

F, X H,xW,xD,

eLU (o)) Sign
v
-> => | BIX1X1 [ =
l
& Fou X Hy X W, % D, H,xW,xD,
W,:1x1x1

F,x H, xW, XD,

(b) Attention Gate

| =2 Skip-Connection Feature Concatenation > Downsample: Strided Convolution
i = Flatten+Linear Reshape — 3 x 3 x 3 Convolution 2 Upsample: Deconvolution
Attention Gate @ Element-wise Addition Element-wise Multiply

Fig. 1. Overview of the designed network.

2.2 3D CNN

For the encoder component, we employ residual blocks, with each individual
block comprising two convolutional layers accompanied by normalization and
Rectified Linear Unit (ReLU) activation. Following this, an additive identity
skip connection is incorporated. To achieve this, we utilize convolution operations
employing a kernel size of 3 x 3 x 3. This step allows for a gradual reduction
in the dimensions of the image by a factor of 2, progressively integrating the
nearby context into a feature map denoted as F' within the real-number space
R1O2X X 15X 15, Moreover, we apply Batch Normalization (BatchNorm) as the
chosen normalization technique, which in turn leads to enhanced performance
outcomes. By subjecting the input data to the 3D Convolutional Neural Network
(CNN), we not only acquire more intricate local details, but we also alleviate the
computational burden. This is due to the fact that the necessity to individually
process each component or modality is obviated.
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2.3 Attention Gate

Like [14], we utilize the attention gates (AGs) to alleviate feature loss through
skip connections. The attention gate block is illustrated in Fig. 1 (b). The input
features (x!) undergo scaling using attention coefficients (a) computed within
the AG module. Spatial regions are chosen by analyzing both the activations
and contextual information derived from the gating signal (g), which is acquired
from a more coarse-grained level. Resampling of attention coefficients on a grid
is accomplished through trilinear interpolation. In this paper, we adopt multi-
dimensional AGs where we extract and blend complementary information to
establish the output of the skip connection. To alleviate the burden of exces-
sive trainable parameters and the computational intricacy associated with AGs,
we execute linear transformations without involving spatial support (utilizing
1 x 1 x 1 convolutions). Moreover, we downsample the input feature-maps to
match the resolution of the gating signal. This strategic approach ensures that
attention units across various scales possess the capacity to influence responses
encompassing a broad spectrum of foreground content within the images. Con-
sequently, we proactively prevent the reconstruction of dense predictions solely
from minute subsets of skip connections.

2.4 Decoder

The segmentation result R; € REXHXWXD g produced by the decoder with

the intermediate feature F' as the input. There are two decoders in the network
shown in Fig. 1 (a), the upper being the chief decoder while the lower being
the auxiliary decoder. The chief decoder is the U-Net architecture with the skip
connections and holds individual parameters. Different from the chief decoder,
the auxiliary decoder is the VAE network, sampling from the Gaussian distri-
bution N (1(128),02(128)). Hence the function of them differs from each other,
the chief decoder aims at better segmentation results while the auxiliary one is
to prevent the latent feature loss, which means encoder can better capture the
tumor information. For the loss functions, we use the softmax Dice loss which
can be calculated by

M N,
23 e Zj:l 9505
M N. 2 M Ne 2
D=1 23:1 (g;) + 2 e 23:1 (pj)

where gf is a binary variable that indicates whether ¢ is the correct label for
position j, p§ is the predicted probability of label ¢ at position j, M refers
to the number of labels, and N, represents the voxel number of label ¢ in the
sample. Since there are usually three types of regions to be concerned (including
enhancing tumor region (ET), tumor core region (TC), and the whole tumor
region (WT) ), the total loss varies in the range of [0, 3] theoretically.

Besides, we use the typical cross entropy loss to further promise the segmen-
tation accuracy:

Laice = 1 — Dice(g5,pj) =1 — (1)
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Table 1. The network details of our method.

Component, Block Operation Output size
Conv3, BN, ReLU
InitConv 24 x 160 x 160 x 128
Conv3, BN, ReLU
Encoder:
DownSample i | Maxpool(kernel2)
3D CNN _

) 71(24 x 2%) x (160 x 27%)x
EncBlock i Conv3, BN, ReLU (160 x 271) x (128 x 271)

(i=1,2,3) |[|Conv3, BN, ReLU

Maxpool(kernel2)
Conv3, BN, ReLU 192 x 10 x 10 x 8
Conv3, BN, ReLU

DownSample

EncBlock

AttentionBlock i  AttentionLayer

T 71(192 x 27%) x (10 x 2%)x
Decoder: DeBlock i Conv3, BN, ReLU (10 x 21) x (8 x 21)

(i=1,2,3) |[|Conv3, BN, ReLU

Chief
AttentionLayer
AttentionBlock | q
Conv3, BN, ReLU 24 x 160 x 160 x 128
DeBlock
Conv3, BN, ReLU
EndConv Conv3 4 x 160 x 160 x 128
GN, ReLU
Decoder 256 x 1
Conv3, Dense
Sample ~
Decoder: Sample , 128 x 1
N(p(12 12 -‘
Auxiliary (1(128),0°(128))
Dense, ReLU
UpBlock 256 x 10 x 10 x 8
Convl,Uplinear

Conv3, UpLinear
DeBlock i GN, ReLU, Conv3 | (256 x 27%) x (10 x 2¢)x
(i=1,23) ||GN,ReLU,Convg|| (10%27)x (8 x27)

AddIid

Conv3, UpLinear
GN, ReLU,Conv3
DeBlock 32 x 160 x 160 x 128
GN, ReLU, Conv3

Addld

EndConv Conv3 4 x 160 x 160 x 128
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Leross = — Z g]c‘ IOg(pj) (2)

The term L, corresponds to an Ly loss applied to the output Ry € RE*HXWxD
of the VAE branch, with the objective of aligning it with the input data X. This
loss mechanism operates by quantifying the Euclidean distance between the gen-
erated VAE output and the original input, fostering an optimization process that
aims to minimize the dissimilarity between the two representations.

L, =[R2 = X|I3 3)

L1 stands for the conventional penalty term utilized in a variational au-
toencoder (VAE) framework. It quantifies the Kullback-Leibler (KL) divergence
between the estimated normal distribution N (p,0?) and a predefined prior dis-
tribution N (0, 1). Notably, this term plays a crucial role in regulating the latent
space during the VAE training process. Its closed-form expression is an essential
feature of VAEs and contributes to the overall effectiveness of the model.

_ 1 2 2 2
‘CKL_NZM 4+ o0 —logo” —1 (4)
The total loss function is:
EZ(l—O() X‘Ccross+£dicexa+al ><‘CL2'+_052><‘CKL (5)

where o, aq, as are the hyper-parameters to balance each loss item.

3 Results

3.1 Data and Implementation

Data used in this publication are provided by the FeTS Challenge, and were ob-
tained as part of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS)
Challenge project through Synapse ID (syn28546456) [16,17,2]. The training set
contains 1000 samples each with four modalities of T1, Tlce, T2 and FLAIR
while the valid set contains 200 samples. Every modality of a sample is presented
with a volume of 240 x 240 x 155 which is randomly cropped to 160 x 160 x 128.
Although the validation set is also provided but without the ground truth. There-
fore we divide the training data into two parts without overlap, and use about
1/4 data merely for model evaluation and result analysis. We use the classical
Dice score (the higher the better) as the metric, calculated in regions of ET,
TC and WT respectively. For the loss weights, we set @ = 0.5, a3 = 0.5 and
Qg = 0.5.

Based on the open source of [23], the network is implemented under the
Pytorch framework. We train it with one NVIDIA A100 GPUs (each has 80GB
memory) from scratch using a batch size of 1. The initial learning rate is 4 x e 4.
For more training details including learning rate decay and data augmentation
strategies, please refer to [23]. The network details are provided in Table 1. Conv3
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Fig. 2. The segmentation results of our method.

denotes a convolutional layer with the kernel size of 3 x 3 x 3, BN is short for
Batch Normalization, GN is short for Group Normalization, UpLinear means
3D linear spatial upsampling, Dense stands for full connections and AddId rep-
resents addition of identity skip connection.

3.2 Discussion

Following the acquisition of the segmentation outcomes, we proceed with an
evaluation encompassing per-class Dice coefficients, Hausdorff distances.

Dice coefficient, often denoted as D, is a common metric used for assessing
the overlap between two sets. It is defined as:

2x|XNY]|
p=:-212 71 6
X 17 (6)

Where X represents the ground truth segmentation mask and Y represents
the predicted segmentation mask. |-|denotes the cardinality of a set, and|- N |
represents the intersection of two sets.

Hausdorff distance, denoted as H, is a measure of the maximum distance
between the points of two sets. Specifically, the Hausdorff distance between sets
X and Y is defined as:

H(X, Y) = {Supmex Z'nfyGYd(xvy)a SUPyey mfmexd(%y)} (7)

Where d(zx,y) represents the distance between point x in set X and point y
in set Y. The Hausdorff distance measures the similarity between two sets by
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capturing the maximum distance of a point in one set to the closest point in the
other set.

Besides, two innovative performance metrics referred to as lesion-wise Dice
scores and lesion-wise Hausdorff distances at the 95th percentile (HD95). These
were developed to evaluate segmentation performance at a lesion level rather
than at the whole study level. By evaluating segmentation performance at the
lesion level we can understand how well models detect and segment multiple
individual lesions within a single patient. Traditional performance metrics used
in prior BraTS are biased for large lesions. The results of this evaluation are
presented in both Table 2 and Table 3. A comparison against models with a
single decoder branch highlights a noticeable enhancement in segmentation per-
formance with the integration of the VAE. This enhancement serves as a com-
pelling testament to the efficacy of our proposed methodology. For enhanced
clarity, we visually represent the segmentation outcomes in Figure 2. In con-
trast to the quantitative metrics, these visual depictions offer a more intuitive
assessment of segmentation quality. Across most scenarios, our outcomes closely
resemble the ground truth, demonstrating the promising practical applicability
of our approach. However, it is acknowledged that certain shortcomings persist
within the segmentation results, such as the occasional omission of small, scat-
tered regions. We proceed with a comprehensive examination of the convergence
within our network. We present the curves depicting the variation in loss across
training iterations in Figure 3, providing a visual representation of the model’s
convergence dynamics. Notably, a rapid reduction in loss is evident during the
initial 50 iterations.

Table 2. Dice score and Hausdorff distance-95 (HD95) measurements of the proposed
segmentation method. EN - enhancing tumor core, WT - whole tumor, TC - tumor
core.

Dice Score (%) 1 HD95 Score |
ET WT TC ET WT TC
Attention+VAE 75.5 80.2 70.8 26.49 13.17 | 31.73
Attention 72.9 78.7 69.4 31.31 15.14 40.22

Method

Table 3. Lesion-wise dice score and lesion-wise Hausdorff distance-95 measurements
of the proposed segmentation method.

LesionWise Dice (%) 1 LesionWise HD95 |

ET WT TC ET WT TC

Attention+VAE | 62.6 72.4 62.8 95.11 59.39 85.37
Attention 59.7 | 71.9 56.5 109.78 63.92 106.26

Method
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Fig. 3. The loss decline trend of the model in train and valid datasets.

4 Conclusion

In this paper, we have taken steps to elevate the capabilities of the encoder within
the encoder-decoder network architecture by incorporating 3D convolutions and
attention gates. This augmentation has resulted in remarkable brain tumor seg-
mentation outcomes when applied to MRI samples. This enhancement offers a
threefold advantage: (1) Exploiting 3D Convolution: The integration of 3D con-
volution goes beyond capturing local correlations within individual modalities
of MRI. It extends its reach across all four modalities, comprehensively enhanc-
ing our ability to decipher intricate patterns. (2) Harnessing Attention Gates:
Our implementation of attention gates has proven to be a pivotal advancement.
These gates facilitate superior feature fusion through skip connections, effec-
tively thwarting the risk of detail leakage. (3) Empowering Encoder with VAE:
We have also integrated a Variational Autoencoder (VAE) as an auxiliary de-
coder, effectively bolstering the capabilities of the encoder to capture complex
features. The entire network has been meticulously trained and validated using
MRI data provided by the esteemed Federated Tumor Segmentation (FeTS) 2023
Challenge. Notably, our approach excels in producing convincing and promising
segmentation outcomes in the Federated Evaluation phase, firmly underscoring
the remarkable generalization prowess of our proposed methodology.
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